Rényi entropy flows from quantum heat engines
نویسندگان
چکیده
We evaluate Rényi entropy flows from generic quantum heat engines (QHE) to a weakly coupled probe environment kept in thermal equilibrium. We show that the flows are determined not only by heat flow but also by a quantum coherent flow that can be separately measured in experiment apart from the heat flow measurement. The same pertains to Shannon entropy flow. This appeals for a revision of the concept of entropy flows in quantum nonequlibrium thermodynamics.
منابع مشابه
A review of quantum thermodynamics
In this article, we present a brief and elementary review of quantum thermodynamics and its achievements and challenges. This review includes an introduction to some fundamental concepts such as internal energy, heat, work, entropy, entropy production, thermal equilibrium, second law of quantum thermodynamics, relation between thermodynamics and information theory, as well as a discussion of ho...
متن کاملEnhanced Energy Distribution for Quantum Information Heat Engines
A new scenario for energy distribution, security and shareability is presented that assumes the availability of quantum information heat engines and a thermal bath. It is based on the convertibility between entropy and work in the presence of a thermal reservoir. Our approach to the informational content of physical systems that are distributed between users is complementary to the conventional...
متن کاملMaximum Power Output of Quantum Heat Engine with Energy Bath
Abstract: The difference between quantum isoenergetic process and quantum isothermal process comes from the violation of the law of equipartition of energy in the quantum regime. To reveal an important physical meaning of this fact, here we study a special type of quantum heat engine consisting of three processes: isoenergetic, isothermal and adiabatic processes. Therefore, this engine works be...
متن کاملScaling-Up Quantum Heat Engines Efficiently via Shortcuts to Adiabaticity
The finite-time operation of a quantum heat engine that uses a single particle as a working medium generally increases the output power at the expense of inducing friction that lowers the cycle efficiency. We propose to scale up a quantum heat engine utilizing a many-particle working medium in combination with the use of shortcuts to adiabaticity to boost the nonadiabatic performance by elimina...
متن کاملEntropy Generation Analysis of EG – Al2O3 Nanofluid Flows through a Helical Pipe
fluids for various industrial applications because of their excellent thermal performance. This study analytically and experimentally examines the effects of nanoparticle dispersion on the entropy generation of EG–Al2O3 ...
متن کامل